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Abstract
Chemical systems giving rise to multiple steady states and subjected to
fluctuations and a variation in time of the parameter controlling the instability
are studied, with emphasis on the kinetics of the switching between two states. It
is shown that the presence of a ramp in the control parameter in conjunction with
the fluctuations considerably affects the switching process as compared to the
predictions of the deterministic (mean field) analysis. Furthermore, both these
factors have clear-cut signatures at the level of the system’s thermodynamic
properties, as described by the entropy production.

1. Introduction

Many chemical systems are described by evolution equations of the form

dx

dt
= v(x,µ) + R(t) (1)

where x = (x1, . . . , xn) denotes the set of concentrations of the species present; v =
(v1, . . . , vn) the evolution laws prescribing how these species are produced or consumed by
the chemical reactions; µ is a set of parameters describing how the system communicates
with its environment; and R(t) = (R1, . . . , Rn) is a set of stochastic forcings accounting for
the fluctuations generated spontaneously within the system or for the perturbations impinging
randomly and in an essentially uncorrelated fashion from the external world.

It is by now well established that equation (1) generates a wide variety of complex
behaviours, one of the ubiquitous manifestations of which is the occurrence of bifurcations
leading to multiple, simultaneously stable states (Nicolis 1995). Basic ingredients needed for
such transitions are, on the one side, the presence of suitable nonlinearities in the kinetics,
particularly in the form of autocatalytic reactive steps; and, on the other side, the maintenance
of nonequilibrium constraints keeping the system in a regime where the property of detailed
balance familiar from standard chemistry in equilibrium is no longer satisfied.
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Ordinarily, when analysing the nature of a particular set of solutions of equation (1)
the control parameters (which include, among others, the distance from thermodynamic
equilibrium) are assumed to remain fixed. There are, however, situations in which this
assumption proves to be inadequate. As an example, by suitably varying a parameter μ in
time through, say, temperature or pH control, one may channel a reaction pathway in order to
increase the selectivity of a desired product. Alternatively, a time-dependent μ may account
for the effect of a constraint that is gradually switched on at some stage of the evolution as it
happens, in particular, in mechanochemical processes at the mesoscopic level where adenosine
triphosphate hydrolysis enables the system to produce mechanical work and to rectify the
environmental fluctuations.

In the present paper, we report results on the response of nonlinear chemical systems
subjected to fluctuations and to a slow variation of a control parameter during some time
interval τ in the form of a ramp (Nicolis and Nicolis 2000),

μ = μ1 t < t1

= μ1 + μ2 − μ1

τ
(t − t1) t1 � t � t1 + τ

= μ2 t > t1 + τ. (2)

We are especially interested in systems undergoing transitions associated with the emergence
of two simultaneously stable steady states through a supercritical pitchfork bifurcation. As is
well known, in the vicinity of such a bifurcation the dynamics reduces to a universal evolution
law (normal form) displaying a single variable (the order parameter). Equation (1) can then be
cast in the form (Nicolis 1995, Gardiner 1983)

dz

dt
= μ(t)z − z3 + F(t) (3)

where μ(t) is given by (2) and z, F are linear combinations of the original variables {xi} and
stochastic forcings {Ri(t)}. In what follows F will be assimilated to a Gaussian white noise,

〈F(t)〉 = 0, 〈F(t)F(t ′)〉 = q2δ(t − t ′).

For later use it will be useful to notice here that since equation (3) involves a single dependent
variable, it can be written in a variational form:

dz

dt
= −∂U

∂z
+ F(t), (4a)

where U(z, t) is the kinetic potential,

U(z, t) = −μ(t)
z2

2
+ z4

4
. (4b)

It is instructive to keep track of the steps by which an equation like equation (3) may arise from
a concrete chemical system. We choose for this purpose the following autocatalytic reaction
scheme (Schlögl 1971):

A + 2X←−−
k2

k1−−→3X, X←−−
k4

k3−−→B (5)

where A, B are initial and final products whose concentrations are supposed to be controlled
externally, X denotes an intermediate, and ki (i = 1, . . . , 4) are the rate constants.

In the absence of both fluctuations and ramp the balance equation for the concentration x
of X is (we limit ourselves to an ideal, well-stirred system)

dx

dt
= −k2x3 + k1ax2 − k3x + k4b. (6)

2
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As is well known, the behaviours produced by such a cubic equation can be fully accounted for
with the help of just two control parameters, here denoted by μ and λ. This implies that upon
a suitable scaling of a, b, x and t , it will be sufficient to set from now on

a = 3, k1 = k2 = k4 = 1, b = 1 − λ, k3 = k = 3 − μ, (7)

it being understood that λ � 1, μ � 3. Under these conditions equation (6) becomes (for
simplicity we use for the scaled variables the same notation as before)

dx

dt
= −x3 + 3x2 − (3 − μ)x + 1 − λ

= μx − (x − 1)3 − λ. (8a)

Introducing the variable

z = x − 1 (8b)

one is led then to the equation

dz

dt
= μz − z3 + μ − λ (9)

which is reduced to the normal form of a supercritical pitchfork bifurcation when the additional
condition λ = μ is imposed. Notice that in this latter setting the system needs to be
maintained beyond a finite distance from thermodynamic equilibrium. Indeed, in equilibrium,
detailed balance implies for scheme (5) the condition k1k3a = k2k4b or, with relations (7),
3(3 − μ) = 1 − λ, yielding

λeq = 3μ − 8, xeq = 3 (10)

with zeq = 2 by equation (8b). The aforementioned pitchfork bifurcation condition λ = μ

would lead here to μ = 4, an unacceptable value in view of relations (7).
In the following the effects arising from the noise and the ramp are combined to obtain

the overall kinetics of the system during a transition between two steady states induced by the
switching. In section 2, the deterministic dynamics of the noise-free system is first considered.
The analytical formulation of the stochastic dynamics is given in section 3 and is compared
to the results of numerical simulations. Section 4 is devoted to the thermodynamics of the
transition process. The main conclusions are summarized in section 5.

2. The noise-free system: effect of switching on pitchfork bifurcation

In this section we are concerned with dynamical systems described by the evolution equation

dz

dt
= μ(t)z − z3 (11)

where μ(t) is given by equation (2). We notice that in the absence of switching, μ = μ1 =
const, equation (11) reduces to

dz

dt
= μ1z − z3. (11a)

This equation admits for μ1 < 0 the unique, asymptotically stable steady-state solution

z0 = 0 (μ1 < 0), (11b)

and for μ1 > 0 the steady-state solutions

z0 = 0, z± = ±√
μ1 (μ1 > 0), (11c)

3
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which are, respectively, unstable and asymptotically stable. When the time dependence of μ

is taken into account equation (11) can still be integrated exactly by switching to the variable
u = z−1/2, as it is of the Bernoulli type. This solution is, however, rather formal, and it will be
more instructive to resort to approximations. We hereafter seek for such perturbative solutions,
for initial conditions near the state z0 = 0 of the reference system (11a) and for two typical
situations whereby the switching is started in the range of positive or of negative values of μ.
In both cases we set, without loss of generality, t1 = 0 in equation (2).

2.1. Switching from positive values of μ

We consider for concreteness, and without loss of generality, a positive initial condition. Owing
to the instability of the ghost state z0 = 0 in the limit where μ is kept constant, one expects
a tendency to evolve immediately away from z0 = 0. The first stage of this evolution can be
determined from the linearized version of equation (11), whose solution reads

z(t) = z(0)exp

(
μ1t + ε

t2

2

)
t � τ

= z(τ ) exp(μ2(t − τ )) t > τ, (12a)

where we have set

ε = μ2 − μ1

τ
. (12b)

This transient would saturate under the influence of nonlinearities to μ
1/2
1 if μ were kept fixed.

But in the presence of switching and as long as ε is small one expects that during the switching
time τ one could seek for slowly varying solutions of equation (11) replacing μ

1/2
1 , of the form

z = z(0) + εz(1) + · · · , (13a)

where z(0) is given by a form similar to z± in (11c) to which we may refer as the adiabatic
approximation,

z(0) = (μ1 + εt)1/2 t � τ. (13b)

One expects that z(t) as given by the first equation (12a) will merge with z(0) at a crossover
time t∗ < τ that can be estimated from the relation

(μ1 + εt∗)1/2 ≈ z(0) exp

(
μ1t∗ + ε

t∗2

2

)
.

Finally, after following for a while the adiabatic approximation the solution will saturate to the
final steady-state solution μ

1/2
2 under the effect of the nonlinearities.

In figure 1 the different stages of the evolution as given by equations (12a) and (13b) are
plotted against time, along with the numerical solution of the full nonlinear equation (11). We
observe first a slow increase followed by an abrupt transition reflected by the presence of an
inflexion point and, eventually, a saturation. These results corroborate the above qualitative
picture, including the estimate of the crossover time.

2.2. Switching from negative values of μ

We consider again positive initial conditions and take the final value μ2 to be positive. Since
the ghost state z0 = 0 is initially stable, the system first tends to stay in its vicinity and
is thus reducible to the linearized solution, equation (12a). One would think that this will
last until μ(t) as given by (2) crosses zero, which happens at t0 = τ |μ1|/(μ2 + |μ1|).
The unexpected feature (Mandel and Erneux 1984) is that there exists an extra delay during

4
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Figure 1. Time evolution of z, equation (11) as obtained numerically (full line) with μ1 =
0.1, μ2 = 0.5, ε = 10−2 and z(0) = 0.01. The dashed–dotted line stands for the adiabatic
approximation equation (13b) and the dashed line for the analytic result in the linearized
approximation, equation (12a).

Figure 2. As in figure 1 but for μ1 = −0.5.

which the system stays in the vicinity of z0 = 0. The delay time corresponds to the
time necessary to build a positive exponent in the first equation (12a) and is thus given by
td = 2τ |μ1 |/(μ2 + |μ1|) = 2t0. Once this delay has elapsed the solution (12a) will in principle
cross over as in the previous subsection with the adiabatic approximation (equation (13b)) and
follow it for some (possibly short) time until nonlinear effects leading to saturation to the final
state μ

1/2
2 are again taking over. Figure 2 depicts the results of the numerical integration of

the full nonlinear equation (11) under the conditions of this subsection. Again, the qualitative
picture drawn above is reproduced quite satisfactorily. Notice that there is here no time for the
regime of the adiabatic approximation to manifest itself prior to the rapid jump of the solution
to the saturation value.

5
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3. Stochastic dynamics of switching

We now augment the description of section 2 to account for the effect of the fluctuations. We
use for this purpose the full Langevin equation (3) and the associated Fokker–Planck equation
(Gardiner 1983),

∂ P

∂ t
= − ∂

∂z
(μ(t)z − z3)P + q2

2

∂2 P

∂z2
. (14)

We first address the role of the fluctuations in the early stages of the switching starting, as in
section 2, with an initial condition close to z = 0. Within the range of validity of equation (12a)
one may then limit the drift term in equation (14) to its linear part. Multiplying both sides by z2

and integrating over z, this yields the following equation of evolution for the second moment
z2,

dz2

dt
= 2μ(t)z2 + q2 (15)

whose formal solution is (cf equation (2))

z2
t = exp

(
2

(
μ1t + ε

t2

2

))
z2

0 + q2
∫ t

0
dt ′ exp

(
−2

[
μ1(t

′ − t) + ε

2
(t ′2 − t2)

])

(t � τ ) (16a)

z2
t = exp(2μ2(t − τ ))z2

τ + q2

2μ2
(exp(2μ2(t − τ )) − 1) (t > τ). (16b)

We notice that the first term of these expressions is identical to the (squared) deterministic
response (equation (12a)), whereas the second one accounts for the effect of the fluctuations.

Expression (16a) reduces straightforwardly, through an appropriate change of variables,
to

z2
1 = exp

(
2

(
μ1t + ε

t2

2

))
z2

0 + q2

2

√
π

ε
exp

(
(μ1 + εt)2

ε

)

×
[

erf

(
− μ1√

ε

)
− erf

(
−μ1 + εt√

ε

)]
. (17)

For μ1 > 0 and much larger than
√

ε, asymptotic expansion of the error functions of the
opposite arguments to those appearing in equation (17) yields

z2
t ≈ exp

(
2

(
μ1t + ε

t2

2

))
z2

0 + q2

2

⎛
⎝exp

(
2
(
μ1t + ε t2

2

))
μ1

− 1

μ1 + εt

⎞
⎠

(μ1 > 0). (18a)

For μ1 < 0 the argument of the first error function in (17) is positive, whereas for the
second one it switches from positive to negative values at the time t0 defined in section 2.2.
Accordingly, the associated asymptotic expansions differ from equation (17) in that the second
term is to be replaced by

q2

2

⎛
⎝ 1

μ1 + εt
−

exp
(

2
(
μ1t + ε t2

2

))
μ1

⎞
⎠ t < t0

q2

√
π

ε

exp (μ1 + εt)2

ε
t > t0.

(18b)

6
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Figure 3. Time evolution of the square root of the second moment of variable z (full line) in the
presence of an additive stochastic forcing as obtained from the Fokker–Planck equation with an
initial condition delta picked at z = 0.01. The dashed line stands for the deterministic behaviour
and the dotted line for the approximate analytic solution, equation (18). Parameter values as in
figure 1 with q2 = 10−4.

The results in equations (17) and (18) will now be complemented and extended to the nonlinear
range by numerical solution of the Fokker–Planck equation (14). We adapt for this purpose to
the time-dependent case a method originally developed by Chang and Cooper (1970) for the
computation of steady-state solutions. Figure 3 (full line) depicts the time dependence of the
square root of z2

t (for the purposes of comparison with the deterministic response, dotted line)
for initial conditions and ε values as in figure 1 and for a variance q2 = 10−4. For comparison
we also plot (dashes) the analytic result, equations (17) and (18). As can be seen, the switching
keeps the general features of figure 1, but under the effect of fluctuations the time of switching
tends to be advanced. This tendency is overestimated by the analytic result, which follows the
numerical result of the full Fokker–Planck calculation for a while, but subsequently gives rise
to a runaway behaviour.

A more detailed view of the role of fluctuations on switching is afforded by the
computation of the probability distribution of the switching times associated with the different
realizations of the underlying stochastic process. For this purpose the full Langevin equation (3)
is simulated numerically, using the same initial condition as in section 2. For clarity, only
those realizations that switch towards the attractor in the region of positive z are retained
in the statistics. Figure 4(a) depicts one such realization of the stochastic process, and in
figure 4(b) the probability distribution of switching times, defined as the times of crossing by the
trajectory of a value corresponding to the inflexion point of the kinetic potential (equation (4))
at μ = μ2, is drawn. While the general features of switching identified in the deterministic
analysis (section 2) are preserved, there is now a considerable dispersion of switching times.
Indeed, the mean and the standard deviation in figure 4(b) amount to about 20 and 3.2 time units
respectively, their ratio being more than one order of magnitude larger than the noise strength.
As for the switching times observed in the simulations, they span a range with a minimum at
12.4 and a maximum at 45.5.

An alternative view of the variability of the switching process is provided by the evolution
of the probability distribution of the variable z itself at different times, as seen in figure 5. As
the switching region is swept the probability, first centred at a value close to zero, develops a

7
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Figure 4. Stochastic evolution toward state μ
1/2
2 (a) and probability density of the transition times

to that state (b) as obtained numerically from the Langevin equation (3). Parameter values as in
figure 1 with q2 = 10−4. The number of realizations for figure 4(b) is 2 × 106.

long tail. This tail initiates a ‘seeding’ process whereby there is a buildup of probability mass
for increasingly large z values until a very narrow distribution centred on the final attractor
z+ = μ

1/2
2 is reached at a time t larger than τ . This is reminiscent of the behaviour found

in explosive systems operating in the vicinity of a limit point bifurcation (Nicolis and Baras
1987). In addition to the transient long-tailed probability distributions found here such systems
are also known to give rise to transient bimodality. This latter behaviour has not been observed
here, at least not under the switching scenarios explored.

We close this section by analysing the transition dynamics between the local minima of
the kinetic potential, equation (4). The evolution is now started at a z value far from zero, close
to one of these minima—say the positive one—corresponding to the starting value of μ in the
switching process (equation (2)). Under standard conditions, in the presence of fluctuations
transitions between this and the second minimum will take place on a characteristic timescale
given by Kramers’ formula, (Gardiner 1983)

θ± = π[−U ′′(z0)U
′′(z±)]−1/2exp

(
2

q2
	U±

)
, (19a)

where 	U is the potential barrier

	U± = U(z0) − U(z±) = −1

4
μ2. (19b)

Eventually, as U(z+) = U(z−) an equipartition regime will be established in which the
probability masses N+ and N− in each of the two wells will be equal. The question raised
here is, to what extent under the prescribed initial condition and the action of the ramp the state
at the end of the switching process t = τ will instead be sufficiently biased for the system to
remain preferentially in the vicinity of one of the states z± = ±μ

1/2
2 .

In order to disentangle the transient behaviour starting with an initial state favouring z+ or
z−, from the equipartition case we set

N±(t) = 1
2 ± δN(t). (20)

8
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Figure 5. Probability density of z at different stages of the switching process. The parameter values
as in figure 4(b) and the number of stochastic realizations is 106.

Within the framework of a stochastic extension of the adiabatic approximation (equation (13)),
the excess probability mass obeys the rate equation (Nicolis and Nicolis 2000)

dδN

dt
= − 1

θ(t)
δN, (21)

where θ(t) is formally given by equation (19a), in which U and 	U now account for the
presence of the ramp:

θ−1(t) =
√

2

π
(μ1 + εt) exp(−(μ1 + εt)2/2q 2) t � τ. (22)

Equation (21), subject to (22), can be integrated exactly, yielding

δN(t) = δN(0) exp

{
−

√
2

π

q2τ

μ2 − μ1

[
exp

(
− μ2

1

2q2

)
− exp

(
−

(
μ1 + μ2−μ1

τ
t
)2

2q2

)]}

(t � τ ). (23)

9
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Figure 6. Sensitivity of the excess probability mass δNτ on the strength q2 of the fluctuations and
on the ramp as obtained from equation (23). Parameter values μ1 = 0.1 and μ2 = 0.5.

Figure 6 depicts the deviation from equipartition predicted by this relation at t = τ (i.e. δN(τ )

substantially different from 0, or equivalently N±(τ ) substantially different from 1/2) as a
function of q2, for various values of the ramp ε = (μ2 − μ1)/τ , for an initial δN(0) = 0.5
(i.e. N+(0) = 1). As can be seen, values as far as desired from equipartition can be achieved
through appropriate control of q2 and ε. This provides a bias to the evolution for the post-
switching regime where μ = μ2 entailing that if the barrier 	U(μ2) is sufficiently large,
the system will remain frozen around the attractor at μ

1/2
2 for any length of time of physical

relevance. Notice that freezing can never be complete, as δN(t) is bound to be zero for all t if
initially δN(0) is zero.

The above conclusions are confirmed by the results of the numerical integration of the
Fokker–Planck equation (14). Figure 7 depicts the probability distributions at t = τ deduced
from this integration for a deterministic initial condition at z = 0.01. We observe situations
where there is a marked imbalance between the probability masses in the region of the two
instantaneous minima of U or even an almost 100% selection of one particular state.

4. Thermodynamics of switching

In this section we study how dissipation—a ubiquitous feature of nonequilibrium—is generated
within the system and exchanged between system and surroundings during the switching
process.

As is well known from irreversible thermodynamics, key information about these questions
is provided by the entropy production. In a chemical system, and within the framework
of the local equilibrium assumption, this quantity is the sum of products of the rates times
the affinities of the individual reactions (De Groot and Mazur 1961). As these cannot be
evaluated uniquely on the sole basis of the normal form equation (3), one needs to provide
more specific information on the reaction mechanism. We use for this purpose the Schlögl
model, equation (5). Utilizing the expression of the affinities in terms of chemical potentials as
well as relation (7), one is led to

σ = (3x2 − x3)�n
3

x
+ (kx − b)�n

kx

b
, (24)

10
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Figure 7. Probability distributions at t = τ obtained numerically from equation (14) with an initial
condition delta picked at z = μ

1/2
2 . Parameter values μ1 = 0.1, μ2 = 0.5, q2 = 10−2, ε = 10−2

(a) and ε = 10−3 (b).

it being understood that x is here a fluctuating quantity to be evaluated from the Langevin
equation (3), with x = 1 + z. Actually, in addition to this part one should in principle
include a contribution involving explicitly the random forces F1(t), F2(t) associated to each
of the two fluxes, the random force appearing in equation (3) being F(t) = F1(t) − F2(t).
This contribution is not considered here, as it is beyond the range of the local equilibrium
assumption.

In what follows we will be interested in the behaviour of σ at different stages of the
switching process and, in particular, in its dependence on the strength of the fluctuations q2

and on the duration τ of switching. We will also evaluate the total dissipation,
∑

t released up
to time t , 0 � t � τ , defined as

∑
t

=
∫ t

0
dt ′σt ′ . (25)

Figures 8(a) and (b) summarize the results concerning entropy production averaged over many
realizations of the stochastic process, 〈σ 〉t , starting with a deterministic initial condition at
x = 1.01. As can be seen from (a), mean dissipation increases substantially with the strength
of the fluctuations for intermediate times. Furthermore, while its time dependence follows the
pattern of figure 1 for small and moderate q2, for larger q2 the sigmoidal structure tends to
be blurred and replaced by an almost immediate substantial increase in time. It should also
be noticed that while the switching time τ under the conditions of figure 8(a) is τ = 40, 〈σ 〉t

becomes practically q2 independent at t = 25 and onwards, as the system reaches a state close
to the final deterministic attractor x+ = 1 + z+ = 1 + μ

1/2
2 . As regards the dependence on

switching time for a given value of q2, figure 8(b) shows that dissipation is transiently enhanced
as the switching gets slower: owing to the fact that the transition is more steep in the second
case, the system spends a relatively longer period of time in the range of large values of x where
it dissipates more. Again, the values of 〈σ 〉t for different τ become indistinguishable well prior
to t equal to the corresponding switching times.

As expected the above differences become accentuated when looking at the mean total
dissipation 〈∑〉t , equation (25). One obtains 〈∑〉t equal to 295, 305 and 320 for q2 equal to

11
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Figure 8. Time evolution of the instantaneous entropy production during the switching process for
different values of the fluctuation strength with ε = 10−2 (a), and of the ramp with q2 = 10−4 (b).

10−5, 10−4 and 10−3 respectively, under the conditions of figure 8(a); and 〈∑〉t equal to 305,
and 3354 for ε equal to 10−2 and 10−3 respectively, under the conditions of figure 8(b).

These results can be understood qualitatively by expanding equation (24) around the
instantaneous deterministic value x(t). Keeping the first nontrivial term yields

〈σ 〉t = σ(x(t)) + σ ′(x(t))(〈x〉t − x(t)) + · · · (26)

where σ ′ denotes the derivative of σ and the difference between 〈x〉t and x(t) arises from
the tendency of the fluctuations to advance the switching process (cf figure 3). Numerical
evaluation of the second term in (26) shows that both σ ′ and 〈x〉t − x(t) remain positive for
times up to those where the three curves in figure 8(a) begin to merge. The enhancement of
dissipation induced by the fluctuations is thus a first-order, rather than a second-order (related
to the variance 〈δx2〉t ) effect.

5. Discussion

In this paper the kinetics of the switching between two steady states in chemical systems
undergoing a pitchfork bifurcation has been analysed, in the presence of fluctuations and of
a ramp in the parameter controlling the bifurcation. Two types of switching were considered:
the system is started initially close to the state that loses its stability across the bifurcation
and ends up in one of the new attractors arising beyond bifurcation; or it is started near
one of the stable states corresponding to the initial value of the control parameter and is
subsequently performing during the switching process transitions across the barrier separating
it from the other stable state. It was shown that the presence of the ramp in conjunction with
the fluctuations considerably affects the kinetics of the switching process as compared to the
prediction of the deterministic (mean field) analysis and has, furthermore, a clear-cut signature
on the system’s thermodynamic properties as described by the entropy production.

More specifically, in the first scenario fluctuations tend to advance, in the mean, the
switching process and to introduce a wide dispersion of switching times. And in the second
scenario, they may be at the origin of a drastic redistribution of probability masses across the
barrier at the end of the switching process as compared to the predictions of classical Kramers
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theory. The extent of this redistribution depends in a very sensitive way on the strength of
the fluctuations and on the length of the switching time (equation (23) and figure 6), and
may eventually lead to the practical freezing of the system on a preferred state. Both the
advancement of the switching (first scenario) and the freezing (second scenario) provide an
interesting method of control of the time evolution of multistable chemical systems. Of special
relevance in this respect are mesoscopic level systems such as those involved in biological
metabolic processes or in reactions taking place on supports of restricted geometry, where
the strength of the fluctuations is drastically enhanced as compared to bulk phase systems
encountered in standard physical chemistry.

A natural extension of this work is to consider bistable systems in the range of hysteretic
behaviour, which would amount to keeping the two control parameters μ and λ independent in
equation (9). This would allow one to follow in detail the crossover between switching joining
two equilibrium states (equation (10)) and the switching under nonequilibrium conditions
considered in the present paper. It has been suggested (Jarzynski 1997) that dissipation along
irreversible paths joining two equilibrium states possesses some universal features. It would
undoubtedly be of interest to investigate the influence of nonequilibrium constraints on these
properties and to assess their status on a concrete system amenable to a full thermodynamic
description like the Schlögl model considered in our work.

Acknowledgments

This research is supported by the European Space Agency under contract No AO-2004-070 and
by the European Commission under contract 12975 (NEST).

References

Chang J and Cooper J 1970 A practical difference scheme for Fokker–Planck equations J. Comput. Phys. 6 1–16
De Groot S and Mazur P 1961 Nonequilibrium Thermodynamics (Amsterdam: North-Holland)
Gardiner C 1983 Handbook of Stochastic Methods (Berlin: Springer)
Jarzynski C 1997 Nonequilibrium equality for free energy differences Phys. Rev. Lett. 78 2690–3
Mandel P and Erneux T 1984 Laser Lorenz equations with a time-dependent parameter Phys. Rev. Lett. 53 1818–20
Nicolis C and Nicolis G 2000 Passage through a barrier with a slowly varying control parameter Phys. Rev. E

62 197–203
Nicolis G 1995 Introduction to Nonlinear Science (Cambridge: Cambridge University Press)
Nicolis G and Baras F 1987 Intrinsic randomness and spontaneous symmetry-breaking in explosive systems J. Stat.

Phys. 48 1071–90
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